An Exact Turán Result for Tripartite 3-Graphs

نویسندگان

  • Adam Sanitt
  • John M. Talbot
چکیده

Mantel’s theorem says that among all triangle-free graphs of a given order the balanced complete bipartite graph is the unique graph of maximum size. We prove an analogue of this result for 3-graphs. Let K− 4 = {123, 124, 134}, F6 = {123, 124, 345, 156} and F = {K− 4 , F6}: for n 6= 5 the unique F-free 3-graph of order n and maximum size is the balanced complete tripartite 3-graph S3(n) (for n = 5 it is C (3) 5 = {123, 234, 345, 145, 125}). This extends an old result of Bollobás that S3(n) is the unique 3-graph of maximum size with no copy of K − 4 = {123, 124, 134} or F5 = {123, 124, 345}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Turán Numbers for Even Wheels

The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. We consider a very special case of the Simonovits’s theorem (Simonovits in: Theory of graphs, Academic Press, New York, 1968) which determine an asymptotic result for Turán numbers for graphs with some properties. In the paper we present a more precise result for even ...

متن کامل

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

New Turán Densities for 3-Graphs

If F is a family of graphs then the Turán density of F is determined by the minimum chromatic number of the members of F . The situation for Turán densities of 3-graphs is far more complex and still very unclear. Our aim in this paper is to present new exact Turán densities for individual and finite families of 3-graphs, in many cases we are also able to give corresponding stability results. As...

متن کامل

On a conjecture of Erdős and Simonovits: Even cycles

Let F be a family of graphs. A graph is F-free if it contains no copy of a graph in F as a subgraph. A cornerstone of extremal graph theory is the study of the Turán number ex(n,F), the maximum number of edges in an F-free graph on n vertices. Define the Zarankiewicz number z(n,F) to be the maximum number of edges in an F-free bipartite graph on n vertices. Let Ck denote a cycle of length k, an...

متن کامل

Some Exact Results And New Asymptotics For Hypergraph Turán Numbers

Given a family F of r-graphs, let ex(n,F) be the maximum number of edges in an n vertex r-graph containing no member of F . Let C 4 denote the family of r-graphs with distinct edges A,B, C, D, such that A ∩ B = C ∩ D = ∅, A ∪ B = C ∪ D. For s1 ≤ · · · ≤ sr, let K(s1, . . . , sr) be the complete r-partite r-graph with parts of sizes s1, . . . , sr. Füredi conjectured over 15 years ago that ex(n,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015